Abstract
The carbon (C) footprint of palm oil production is needed to judge emissions from potential biofuel use. Relevance includes wider sustainable palm oil debates. Within life cycle analysis, aboveground C debt is incurred if the vegetation replaced had a higher C stock than oil palm plantations. Our study included 25 plantations across Indonesia, in a stratified study design representing the range of conditions in which oil palm is grown. From allometric equations for palm biomass and observed growth rates, we estimated the time-averaged aboveground C stock for 25-year rotation and 95%-confidence interval to be 42.07 (42.04–42.10) Mg C ha−1 for plantations managed by company on mineral soils, 40.03 (39.75–40.30) Mg C ha−1 for plantations managed by company on peat, and 37.76 (37.42–38.09) Mg C ha−1 for smallholder oil palm on mineral soils. Oil palm can be established C debt-free on mineral soils with aboveground C stocks below these values; neutrality of mineral soil C pools was documented in a parallel study. Acknowledging variation in shoot:root ratios, the types of vegetation that can be converted debt-free to oil palm include grasslands and shrub, but not monocultural rubber plantations, rubber agroforest, and similar secondary or logged-over forests of higher C stock.
Aboveground carbon stocks in oil palm plantations and the threshold for carbon-neutral vegetation conversion on mineral soils
Keywords
Biomass, allometric equation, footprint, Indonesia sustainable palm oil, time-averaged carbon stock
Publisher
Environmental Management & Conservation
Year
2015
Crop
Oil palm
Country
Indonesia